Sabtu, 31 Desember 2011

CARBON TRADE

Carbon Transactions – A Primer


GHG emission reduction transactions can be classified as either allowance-based or projectbased

(Capoor and Amborsi, 2006). Both allowance-based and project-based carbon

transactions are measured and traded in standard units representing a quantity of CO2

equivalent (metric tons of CO2 equivalent = MTCO2). The goal of any tradeable permit

program is to allow market forces to efficiently allocate emission mitigation resources so that

the overall emission reduction goal is achieved at the lowest cost. Emission trading programs

allocate benefits to entities that reduce emissions at low cost by allowing them to make

additional emission reductions, thereby gaining emission allowances that they can sell to those

facing high emission reduction costs. Emission trading programs provide a profit incentive to

devise lower cost emission reduction methods and technologies as well as environmentally

sound land use changes that encourage long-term economic efficiency.

Allowance-based carbon transactions (also called emission allowances) are created by a

regulatory or other cap-and-trade body and are initially allocated or auctioned to the user.

Emission allowance transactions are based on the buyer’s direct emissions. Buyers must

reconcile their emissions account at the end of each compliance period through direct and

verified measurements to ensure compliance with their allocated/auctioned emission

allowances.

Project-based carbon transactions (also called emission reduction credits) are created using

methodologies/rules approved by the organization issuing these transactions from a project that

can credibly demonstrate reduction in GHG emissions compared to what would have happened

without the project. Forestry offset projects are one category of projects that can provide

emission reduction credits. Others include projects such as capturing landfill methane,

conservation tillage practices, and alternative energy.

Emission reduction credits should be issued only after their reductions have been verified,

which can then be used to offset direct emissions above an organization’s allocated/auctioned

emission allowances. The purchase or sale of contracts for emission reduction credits typically

carry higher transaction costs and risk than emission allowances. The “quality” of projects for

gaining emission reduction credits is directly related to the credibility of the organization

issuing the credits, the methodologies/rules for establishing baselines and monitoring the

project’s performance, and the requirement for third-party verification. Once emission

reduction credits are issued and used to offset direct emissions, they provide an identical

environmental improvement in reducing GHG emissions as emission allowances.


PERTANIAN DI INDONESIA DI MASA YANG AKAN DATANG

PENDAHULUAN


A. Latar Belakang

Pertanian adalah kegiatan pemanfaatan sumber daya hayati yang dilakukan manusia untuk menghasilkan bahan pangan, bahan baku industri, atau sumber energi, serta untuk mengelola lingkungan hidupnya. Kegiatan pemanfaatan sumber daya hayati yang termasuk dalam pertanian biasa difahami orang sebagai budidaya tanaman atau bercocok tanam (bahasa Inggris: crop cultivation) serta pembesaran hewan ternak (raising), meskipun cakupannya dapat pula berupa pemanfaatan mikroorganisme dan bioenzim dalam pengolahan produk lanjutan, seperti pembuatan keju dan tempe, atau sekedar ekstraksi semata, seperti penangkapan ikan atau eksploitasi hutan.

Bagian terbesar penduduk dunia bermata pencaharian dalam bidang-bidang di lingkup pertanian, namun pertanian hanya menyumbang 4% dari PDBdunia. Sejarah Indonesia sejak masa kolonial sampai sekarang tidak dapat dipisahkan dari sektor pertanian dan perkebunan, karena sektor - sektor ini memiliki arti yang sangat penting dalam menentukan pembentukan berbagai realitas ekonomi dan sosial masyarakat di berbagai wilayah Indonesia. Berdasarkan data BPS tahun 2002, bidang pertanian di Indonesia menyediakan lapangan kerja bagi sekitar 44,3% penduduk meskipun hanya menyumbang sekitar 17,3% dari total pendapatan domestik bruto.

Kelompok ilmu-ilmu pertanian mengkaji pertanian dengan dukungan ilmu-ilmu pendukungnya. Inti dari ilmu-ilmu pertanian adalah biologi dan ekonomi. Karena pertanian selalu terikat dengan ruang dan waktu, ilmu-ilmu pendukung, seperti ilmu tanah, meteorologi, permesinan pertanian, biokimia, danstatistika, juga dipelajari dalam pertanian. Usaha tani (farming) adalah bagian inti dari pertanian karena menyangkut sekumpulan kegiatan yang dilakukan dalam budidaya. Petani adalah sebutan bagi mereka yang menyelenggarakan usaha tani, sebagai contoh "petani tembakau" atau "petani ikan". Pelaku budidaya hewan ternak (livestock) secara khusus disebut sebagai peternak.

B. Tujuan Makalah

Untuk menggambarkan mekanisme perkembangan teknologi pertanian di masa depan.



PEMBAHASAN

1. Pertanian Masa Depan di Dalam Ruangan dan Bawah Tanah

Sistem pertanian masa depan tak lagi mengandalkan pertanian di lahan luar, melainkan bergeser ke pertanian dalam ruang. Dalam sistem ini, keberadaan sinar matahari dan curah hujan menjadi tak penting karena kondisi iklim diatur. Bercocok tanam dalam ruangan dapat dilakukan di gedung-gedung tinggi, dalam bunker bawah tanah , maupun ditenggah padang pasir. Sistem bercocok tanam ini menggunakan ruang tanpa jendela dengan cahaya, suhu, kelembaban , kualitas udara, dan nutrisi bagi tanaman yang diatur ketat.

Ruagan itu merupakan pengembangan rumah kaca, tetapi tanpa melibatkan cahaya alam. Cara itu diyakini mamu memenuhi kebutuhan pangan global secara berkelanjutan karena tak bergantung pada musim dan cuaca ektrim. Hasil pertanian relatif besar. Dari ruang 100 meter persegi yang dibuat 14 lapis bidang tanam, mampu menghasilkan sayur dan buah untuk 140.000 orang, masing-masing 200 gram. Namun , sistem itu tidak untuk tanama yang butuh ruang luas, seperti jagung, beras dan kentang. Peneliti platlab, perusahaan swasta di den bosch, belanda, gertjan meeuws, kepada AFP, mengatakan tanaman hanya memanfaatkan cahaya matahari dalam panjang gelombang tertentu.

Di alam meereka beradaptasi berbagai panjang gelombang. Dalam ruangan, tanaman diarahkan untuk beradaptasi dengan panjang gelombang yang dibutuhkan saja.Uji laboratorium yang dilakukan Meens dan rekannya menunjukan,sejumlah sayuran dan buah berhasil di tanam hanya mengunakan penerangan cahaya merah dari lampu LED (light-emiting diode) dan merah .teknik pencahayaan itu mampu menghasilkan laju pertumbuhan tanaman tiga kali lebih cepat dibandingkan tanaman di rumah kaca biasa.Pertanian modern, masa depan pertanian,sistem pertanian, pertanian dalam ruang.


2. Pertanian menggunakan seni dalam pengolahan lahan (visualisasi).

Seni menanam yang sangat telaten dan menakjubkan bermunculan di sawah-sawah di Jepang. Para petani menciptakan tampilan mural besar tanpa menggunakan tinta atau pewarna. Sebaliknya, tanaman padi dengan warna-warna berbeda diatur dengan tepat sehingga tumbuh alami di sawah. Sehingga saat musim panas, tanaman tumbuh dan jika dilihat dari atas, karya seni yang rinci mulai muncul.

Pertanian di Indonesia yang akan datang akan menerapkan system ini, karena system ini mampu menjadi kawasan agrowisata yang memiliki nilai komersial.

3. Pertanian menggunakan sistem komputerisasi.

Pada system pertanian ini menggunakan system komputerisasi, dimana pada saat pelaksanaannya tidak menggunakan banyak tenaga kerja, tetapi hanya menggunakan beberapa pekerja sebagai operator untuk mengatur penggunaan segala macam jenis alat dan system dalam pertanian. Tentu saja system ini menggunakan system yang paling tercanggih dengan operator yang handal. Selain itu perkembangan pengetahuan para petani di masa mendatang akan lebih berkembang dibandingkan para petani di masa sekarang yang dipengaruhi perkembangan teknologi yang semakin canggih sehingga membuat para petani dimasa yang akan datang tidak akan canggung dengan adanya system pertanian semacam ini.

4. Pertanian di dalam gedung.

Wacana krisis pangan global makin menghangat akhir-akhir ini, berbagai media lokal dan internasional mulai ramai memberitakan berbagai hal yang berkaitan dengan masalah ini seperti menjadi bukti bahwa mimpi buruk yang sudah diramalkan tersebut akan segera menjadi kenyataan. Melambungnya harga pangan dan beberapa peristiwa kelaparan yang saat ini terjadi di belahan dunia memang bukanlah kejadian yang baru, namun intensitasnya akhir-akhirini memang mebuat miris.

Melambungnya harga pangan dunia dikarenakan berbagai hal. Pertambahan jumlah penduduk yang tidak diimbangi oleh pertambahan jumlah persediaan pangan adalah salah satunya. Daerah pedesaan mengalami kekurangan resource dalam menjalankan peran sebagai supplier. Eksodus warga pedesaan menuju area kota seperti tak terbendung, menggantungkan harapan pada pertanian seperti menjadi opsi ke sekian bagi mereka.

Di latar belakangi hal tersebut lalu munculah sebuah konsep unik membawa pertanian ke perkotaan. Adalah New York magazine yang meminta empat orang arsitek untuk membuat porposal konsep pertanian vertikal, yaitu mencoba membuat daerah perkotaan lebih mandiri dengan menyulapnya menjadi daerah pertanian dan memangkas jalur bahan pangan.

Menarik sekali melihat beberapa konsep design pertanian futuristik tersebut. Lihat saja beberapa yang gambar di bawah ini :



PENUTUP

A. Kesimpulan

1. Pada dasarnya masa akan terus berkembang seiring dengan perkembangan teknologi dan ilmu pengetahuan begitu juga dengan system pertanian ,sehingga menimbulkan berbagai macam mekanisme pertanian dimasa yang akan datang .

2. Pelaksanaan pertanian dapat dicanangkan pada kondisi lahan yang tidak terbatas ,pertanian dapat didalam ruangan dan dimana saja tergantung bagaimana pemenuhan kebutuhan dari pertanian itu sendiri.

3. Para pemerintah dan petani harus saling bahu membahu dalam menciptakan inovasi pertanian terbaru, sehingga dapat memudahkan kegiatan pertanian.


B. SARAN

1. Hendaknya kita dapat menjaga kelestarian alam sekalipun perkembangan zaman terus maju.

2. Kita perlu memperhatikan dan meningkatkan sosialisasi terhadap petani secara terpadu dan intensif.

3.Pemerintah hendaknya dapat menjadi fasilitator bagi petani.



DAFTAR PUSTAKA

Honeyriza,2011.Pertanian.//http:www.kaskus.us/showthread.php?t=2092121. artikel terjemahan dari: http://www.livescience.com/7138-japan-children-love-vegetables.html (diakses pada tanggal 16 Mei 2011).

Anonym, 2011. Pertanian Masa Depan di Dalam Ruangan .//http:www. Waladzi kholakholakhumwebs.blogspot.com (diakses pada tanggal 16 Mei 2011).

Wikipedia, 2011. Pertanian. // http://id.wikipedia.org/wiki/Pertanian (diakses pada tanggal 16 Mei 2011).















IRIGASI POMPA DAN DRAINASE


1.PENGERTIAN POMPA,IRIGASI DAN DRAINASE

1.1 Irigasi

Irigasi adalah usaha penyediaan dan pengaturan air untuk menunjang pertanian yang jenisnya meliputi irigasi air permukaan, irigasi air bawahtanah, irigasi pompa dan irigasi rawa. Semua proses kehidupan dan kejadian di dalam tanah yang merupakan tempat media pertumbuhan tanaman hanya dapat terjadi apabila ada air, baik bertindak sebagai pelaku (subjek) atau air sebagai media (objek). Proses-proses utama yang menciptakan kesuburan tanah atau sebaliknya yang mendorong degradasi tanah hanya dapat berlangsung apabila terdapat kehadiran air. Oleh karena itu, tepat kalau dikatakan air merupakan sumber kehidupan.

Irigasi berarti mengalirkan air secara buatan dari sumber air yang tersedia kepada sebidang lahan untuk memenuhi kebutuhan tanaman. Dengan demikian tujuan irigasi adalah mengalirkan air secara teratur sesuai kebutuhan tanaman pada saat persediaan lengas tanah tidak mencukupi untuk mendukung pertumbuhan tanaman, sehingga tanaman bisa tumbuh secara normal. Pemberian air irigasi yang efisien selain dipengaruhi oleh tatacara aplikasi, juga ditentukan oleh kebutuhan air guna mencapai kondisi air tersedia yang dibutuhkan tanaman.



1.2 Pompa

Pompa adalah jenis mesin fluida yang digunakan untuk memindahkan fluida melalui pipa dari satu tempat ke tempat lain. Dalam menjalankan fungsinya tersebut, pompa mengubah energi gerak poros untuk menggerakkan sudu-sudu menjadi energi tekanan pada fluida.

Klasifikasi Pompa
Menurut prinsip perubahan bentuk energi yang terjadi, pompa dibedakan menjadi :
1. Positive Displacement Pump

Disebut juga dengan pompa aksi positif. Energi mekanik dari putaran poros pompa dirubah menjadi energi tekanan untuk memompakan fluida. Pada pompa jenis ini dihasilkan head yang tinggi tetapi kapasitas yang dihasilkan rendah. Yang termasuk jenis pompa ini adalah :

a. Pompa rotari

Sebagai ganti pelewatan cairan pompa sentrifugal, pompa rotari akan merangkap cairan, mendorongnya melalui rumah pompa yang tertutup. Hampir sama dengan piston pompa torak akan tetapi tidak seperti pompa torak (piston), pompa rotari mengeluarkan cairan dengan aliran yang lancar (smooth).

Macam-macam pompa rotari :

Pompa roda gigi luar
Pompa ini merupakan jenis pompa rotari yang paling sederhana. Apabila gerigi roda gigi berpisah pada sisi hisap, cairan akan mengisi ruangan yang ada diantara gerigi tersebut. Kemudian cairan ini akan dibawa berkeliling dan ditekan keluar apabila giginya bersatu lagi

Pompa roda gigi dalam
Jenis ini mempunyai rotor yang mempunyai gerigi dalam yang berpasangan dengan roda gigi kecil dengan penggigian luar yang bebas (idler). Sebuah sekat yang berbentuk bulan sabit dapat digunakan untuk mencegah cairan kembali ke sisi hisap pompa.

Pompa cuping (lobe pump)
Pompa cuping ini mirip dengan pompa jenis roda gigi dalam hal aksinya dan mempunyai 2 rotor atau lebih dengan 2,3,4 cuping atau lebih pada masing-masing rotor. Putaran rotor tadi diserempakkan oleh roda gigi luarnya.

Pompa sekrup (screw pump)
Pompa ini mempunyai 1,2 atau 3 sekrup yang berputar di dalam rumah pompa yang diam. Pompa sekrup tunggal mempunyai rotor spiral yang berputar di dalam sebuah stator atau lapisan heliks dalam (internal helix stator). Pompa 2 sekrup atau 3 sekrup masing-masing mempunyai satu atau dua sekrup bebas (idler).

Pompa baling geser (vane Pump)
Pompa ini menggunakan baling-baling yang dipertahankan tetap menekan lubang rumah pompa oleh gaya sentrifugal bila rotor diputar. Cairan yang terjebak diantara 2 baling dibawa berputar dan dipaksa keluar dari sisi buang pompa.


b. Pompa Torak (Piston)

Pompa torak mengeluarkan cairan dalam jumlah yang terbatas selama pergerakan piston sepanjang langkahnya. Volume cairan yang dipindahkan selama 1 langkah piston akan sama dengan perkalian luas piston dengan panjang langkah.

Macam-macam pompa torak :
Menurut cara kerja
• Pompa torak kerja tunggal
• Pompa torak kerja ganda
o Pompa torak silinder ganda

2. Dynamic Pump / Sentrifugal Pump

Merupakan suatu pompa yang memiliki elemen utama sebuah motor dengan sudu impeler berputar dengan kecepatan tinggi. Fluida masuk dipercepat oleh impeler yang menaikkan kecepatan fluida maupun tekanannya dan melemparkan keluar volut. Prosesnya yaitu :

- Antara sudu impeller dan fluida

Energi mekanis alat penggerak diubah menjadi energi kinetik fluida

- Pada Volut

Fluida diarahkan kepipa tekan (buang), sebagian energi kinetik fluida diubah menjadi energi tekan.

Yang tergolong jenis pompa ini adalah :
a. Pompa radial.

Fluida diisap pompa melalui sisi isap adalah akibat berputarnya impeler yang menghasilkan tekanan vakum pada sisi isap. Selanjutnya fluida yang telah terisap terlempar keluar impeler akibat gaya sentrifugal yang dimiliki oleh fluida itu sendiri. Dan selanjutnya ditampung oleh casing (rumah pompa) sebelum dibuang kesisi buang. Dalam hal ini ditinjau dari perubahan energi yang terjadi, yaitu : energi mekanis poros pompa diteruskan kesudu-sudu impeler, kemudian sudu tersebut memberikan gaya kinetik pada fluida.

Akibat gaya sentrifugal yang besar, fluida terlempar keluar mengisi rumah pompa dan didalam rumah pompa inilah energi kinetik fluida sebagian besar diubah menjadi energi tekan. Arah fluida masuk kedalam pompa sentrifugal dalam arah aksial dan keluar pompa dalam arah radial. Pompa sentrifugal biasanya diproduksi untuk memenuhi kebutuhan head medium sampai tinggi dengan kapasitas aliran yang medium. Dalam aplikasinya pompa sentrifugal banyak digunakan untuk kebutuhan proses pengisian ketel dan pompa-pompa rumah tangga.

b. Pompa Aksial (Propeller)

Berputarnya impeler akan menghisap fluida yang dipompa dan menekannya kesisi tekan dalam arah aksial karena tolakan impeler. Pompa aksial biasanya diproduksi untuk memenuhi kebutuhan head rendah dengan kapasitas aliran yang besar. Dalam aplikasinya pompa aksial banyak digunakan untuk keperluan pengairan.

c. Pompa Mixed Flow (Aliran campur)

Head yang dihasilkan pada pompa jenis ini sebagian adalah disebabkan oleh gaya sentrifugal dan sebagian lagi oleh tolakan impeler. Aliran buangnya sebagian radial dan sebagian lagi aksial, inilah sebabnya jenis pompa ini disebut pompa aliran campur.


1.3 DRAINASE

Drainase merupakan salah satu fasilitas dasar yang dirancang sebagai sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting dalam perencanaan kota (perencanaan infrastruktur khususnya). Berikut beberapa pengertian drainase :

Menurut Dr. Ir. Suripin, M.Eng. (2004;7) drainase mempunyai arti mengalirkan, menguras, membuang, atau mengalihkan air.

Secara umum, drainase didefinisikan sebagai serangkaian bangunan air yang berfungsi untuk mengurangi dan/atau membuang kelebihan air dari suatu kawasan atau lahan, sehingga lahan dapat difungsikan secara optimal. Drainase juga diartikan sebagai usaha untuk mengontrol kualitas air tanah dalam kaitannya dengan salinitas.

Drainase yaitu suatu cara pembuangan kelebihan air yang tidak diinginkan pada suatu daerah, serta cara-cara penangggulangan akibat yang ditimbulkan oleh kelebihan air tersebut. (Suhardjono 1948:1).Dari sudut pandang yang lain, drainase adalah salah satu unsur dari prasarana umum yang dibutuhkan masyarakat kota dalam rangka menuju kehidupan kota yang aman, nyaman, bersih, dan sehat.


2 .TUJUAN DAN FUNGSI IRIGASI,POMPA DAN DRAINASE
2.1 Fungsi irigasi
1. memasok kebutuhan air tanaman
2. enjamin ketersediaan air apabila terjadi betatan
3. menurunkan suhu tanah
4. mengurangi kerusakan akibat frost
5. mengurangi lapis keras pada saat pengolahan tanah

Irigasi tidak hanya digunakan untuk mendistribusikan air, ada juga beberapa fungsi irigasi antara lain :
1.Membasahi tanah
Hal ini merupakan salah satu tujuan terpenting, karena tumbuhan banyak memerlukan air selama masa tumbuhnya. Pembasahan tanah ini bertujuan untuk memenuhi kekurangan air apabila hanya ada sedikit air hujan.

2.Merabuk tanah
Membasahi tanah dengan air sungai yang banyak mengandung mineral

3.Mengatur suhu tanah
Tanaman dapat tumbuh dengan baik dengan suhu yang optimal. Air irigasi dapat membantu tanaman untuk mencapai suhu yang optimal tersebut.

4. Membersihkan tanah
Hal ini bertujuan untuk menghilangkan hama tanaman seperti ular, tikus, serangga, dan lain-lain. Selain itu dapat juga membuang zat-zat yang tidak dibutuhkan oleh tanaman ke saluran pembuang

5.Memperbesar ketersediaan air tahnah
Muka air tanah akan naik apabila digenangi air irigasi yang merembes. Dengan naiknya muka air tanah, maka debit sungai pada musim kemarau akan naik.


Tujuan Irigasi
Irigasi bertujuan untuk membantu para petani dalam mengolah lahan pertaniannya, terutama bagi para petani di pedesaan yang sering kekurangan air.

1. Meningkatkan Produksi Pangan terutama beras
2. Meningkatkan efisiensi dan efektifitas pemanfaatan air irigasi
3. Meningkatkan intensitas tanam
4. Meningkatkan dan memberdayakan masyarakat desa dalam pembangunan jaringan

2.2 Fungsi drainase
Drainase berfungsi untuk mengalirkan air permukaan ke badan air (sumber air permukaan dan bawah permkaan tanah) dan atau bangunan resapan. Selain itu juga berfungsi sebagai pengendali kebutuhan air permukaan dengan tindakan untuk memperbaiki daerah becek, genangan air dan banjir.

Kegunaan dengan adanya saluran drainase ini antara lain :
Mengeringkan daerah becek dan genangan air sehingga tidak ada akumulasi air tanah.
Menurunkan permukaan air tanah pada tingkat yang ideal.
Mengendalikan erosi tanah, kerusakan jalan dan bangunan yang ada.
Mengendalikan air hujan yang berlebihan sehingga tidak terjadi bencana banjir.
Sebagai salah satu sistem dalam perencanaan perkotaan, maka sistem drainase yang ada dikenal dengan istilah sistem drainase perkotaan.

Tujuan drainase
1. Mengeringkan daerah becek dan genangan air sehingga tidak ada akumulasi air tanah.
2. Menurunkan permukaan air tanah pada tingkat yang ideal.
3. Mengendalikan erosi tanah, kerusakan jalan dan bangunan yang ada.
4. Mengendalikan air hujan yang berlebihan sehingga tidak terjadi bencana banjir.
5. Sebagai salah satu sistem dalam perencanaan perkotaan, maka sistem drainase yang ada dikenal dengan istilah sistim drainase perkotaan.

2.3 Fungsi pompa.
Menaikkan air dari tempat rendah ketempat yang tinggi tanpa listrik dan BBM.

Tujuan pompa
1. Tujuan pompa meningkatkan ketersediaan air irigasi dalam jumlah, waktu, dan luasan/sebaran yang memadai.
2. Mengembangkan pengelolaan/penyediaan air irigasi yang ekonomis, efisien, dan efektif melalui pemanfaatan teknologi pompa hidram pada daerah yang memiliki sumber air permukaan.
3. memperkenalkan dan atau menyebarluaskan penggunaan teknologi pompa hidram sebagai teknolog alternatif yang lebih ekonomis, efektif, dan efisien untuk pengembangan irigasi pertanian.

3. SUBSISTEM JARINGAN IRIGASI
3.1 sumber air : merupakan factor utama yang mendukung bagi proses pengairan.
3.2 petak sawah

1.Petak Primer
Petak atau gabungan dari petak-petak sekunder yang mendapat air langsung dari saluran induk. Petak primer dilayani oleh satu saluran primer yang mengambil airnya dari sumber air. Daerah di sepanjang saluran primer tidak dapat dilayani dengan mudah dengan cara menyadap air dari saluran sekunder.
Apabila saluran primer melewati sepanjang garis tinggi, maka daerah saluran primer yang berdekatan harus dialiri oleh saluran primer.

2.Petak Sekunder
Kumpulan dari beberapa petak tersier yang langsung mendapat air dari saluran sekunder. Biasanya petak sekunder menerima air dari bangunan bagi yang terletak di saluran primer atau sekunder. Batas-batas petak sekunder umumnya merupakan topografi yang cukup jelas, misalnya saluran pembuang. Luas petak sekunder berbeda-beda, tergantung pada situasi daerah. Saluran sekunder sering terletak pada punggung medan, mengaliri kedua sisi saluran hingga saluran pembuang yang membatasinya. Saluran sekunder boleh juga direncanakan sebagai saluran garis tinggi yang mengairi lereng-lereng medan yang lebih rendah


3.Petak Tersier
Petak tersier adalah petak-petak sawah yang mendapat aliran air dari bangunan sadap pada bangunan sekunder. Perencanaan dasar yang berhubungan dengan unit tanah adalah petak tersier. Petak ini menerima air irigasi yang dialirkan dan diukur pada bangunan sadap tersier yang menjadi tanggung jawab dinas pengairan. Bangunan sadap tersier mengalirkan airnya ke saluran tersier. Di petak tersier pembagian air, eksploitasi dan pemeliharaan menjadi tanggung jawab petani yang bersangkutan di bawah bimbingan pemerintah. Hal ini juga menentukan luas petak tersier. Petak yang terlampau besar akan mengakibatkan pembagian air yang tidak efisien. Faktor-faktor penentu lain dalam petak tersier adalah jumlah petani dalam satu petak, topografi, serta jenis tanaman.

3.3 Saluran
Air yang dibutuhkan oleh tanaman biasanya akan dialirkan melalui saluran pembawa. Sedangkan kelebihan air yang ada pada suatu petak akan dibuang melewati saluran pembuang. Saluran pembawa dan pembuang ini merupakan saluran irigasi yang paling utama. Apabila dilihat dari segi fungsinya,maka saluran irigasi dapat dibagi atas :

1.Saluran Pembawa
Saluran pembawa berfungsi membawa/ mengalirkan air dari sumber ke petak sawah. Dari tingkat percabangannya, maka saluran pembawa ini dibedakan menjadi

• Saluran Primer
Berfungsi membawa air dari sumbernya dan membagikannya ke saluran sekunder atau membawa air dari jaringan utama ke jaringan sekunder untuk dibagikan ke petak-petak tersier yang akan dialiri.Air yang dibutuhkan untuk irigasi dapat berasal dari sungai,danau, maupun waduk. Akan tetapi umumnya penggunaan air sungai lebih baik, karena air sungai mengandung banyak zat lumpur yang merupakan pupuk bagi tanaman. Batas akhir dari saluran primer adalah bangunan bagi yang terakhir.

• Saluran Sekunder
Dari saluran primer air disadapa melalui saluran-saluran sekunder untuk mengaliri daerah yang sedapat mungkin dikitari oleh saluran-saluran alam yang dapat digunakan untuk membuang air hujan yang berlebihan. Fungsi utama dari saluran sekunder adalah membawa air dari saluran primer dan membagikannya ke saluran tersier. Sedapat mungkin saluran pemberi merupakan saluran punggung sehingga dengan demikian air dapat dibagi untuk kedua belah sisi.

• Saluran Tersier
Fungsi utama dari saluran tersier adalah membawa air dari saluran sekunder dan membagikannya ke petak-petak sawah yang memiliki luas antara 75 ha- 125 ha. Jika saluran tersier disadap dari saluran sekuder,maka saluran tersier juga dapat membagikan air ke sisi kanan-kiri saluran

2.Saluran Pembuang
Fungsi utama dari saluran pembuang adalah membuang sisa atau kelebihan air yang terdapat pada petak sawah ke sungai. Biasanya digunakan saluran lembah yaitu saluran yang memotong atau melintang terhadap garis tinggi sedemikian rupa hingga melewati titik terendah dari daerah sekitar. Jadi saluran melalui lembah dari ketinggian tanah setempat.



4. TIPE IRIGASI

4.1 langsung
Irigasi langsun adalah irigasi yang langsung di berikan airnya melalui bangunan penangkap air seperti bendungan atau system pompa.

4.2 tidak langsung
Irigasi tidak langsung adalah system irigasi yang mengatur airnya melalui tampungan dahulu dan bilamana air tersebut di perlukan barulah di alirkan ke jaringan irigasi.contohnya:
* waduk
* tampung dahulu
* sungai
* pintu air : adalah bangunan yang mampu mengatuk keluar masuknya air Sejumlah yang di butuhkan oleh tanaman yang di usahakan.


5. TEKNOLOGI APLIKASI AIR IRIGASI
5.1 Irigasi Permukaan
Irigasi Permukaan merupakan sistem irigasi yang menyadap air langsung di sungai melalui bangunan bendung maupun melalui bangunan pengambilan bebas (free intake) kemudian air irigasi dialirkan secara gravitasi melalui saluran sampai ke lahan pertanian. Di sini dikenal saluran primer, sekunder, dan tersier. Pengaturan air ini dilakukan dengan pintu air. Prosesnya adalah gravitasi, tanah yang tinggi akan mendapat air lebih dulu.

5.2 Cara pemberian air irigasi yang termasuk dalam cara pemberian air lewat Permukaan
a. Wild flooding : air digenangkan pada suatu daerah yang luas pada waktu
banjir cukup tinggi sehingga daerah akan cukup sempurna dalam
pembasa hannya; cara ini hanya eoeok apabila eadangan dan ketersediaan
air eukup banyak.

b. Free flooding: daerah yang akan diairi dibagi dalam beberapa bagian/
petak; air dialirkan dari bagian yang tinggi ke bagian yang rendah.

c. Check flooding : air dari tempat pengambilan (sumber air) dimasukkan ke
dalam selokan, untuk kemudian dialirkan pada petak-petak yang kecil;
keuntungan dari sistem ini adalah bahwa air tidak dialirkan pada daerah
yang sudah diairi.

d. Border strip method : daerah pengairan dibagi-bagi dalam luas yang kecil
dengan galengan berukuran lOx 100 m2 sampai 20 x 300 m2; air dialirkan.


Irigasi Lokal
Sistem ini air distribusikan dengan cara pipanisasi. Di sini juga berlaku gravitasi, di mana lahan yang tinggi mendapat air lebih dahulu. Namun air yang disebar hanya terbatas sekali atau secara lokal.

Irigasi dengan Penyemprotan
Penyemprotan biasanya dipakai penyemprot air atau sprinkle. Air yang disemprot akan seperti kabut, sehingga tanaman mendapat air dari atas, daun akan basah lebih dahulu, kemudian menetes ke akar.

Irigasi Pompa Air
Air diambil dari sumur dalam dan dinaikkan melalui pompa air, kemudian dialirkan dengan berbagai cara, misalnya dengan pipa atau saluran. Pada musim kemarau irigasi ini dapat terus mengairi sawah.

Irigasi Tanah Kering dengan Terasisasi
Di Afrika yang kering dipakai sustem ini, terasisasi dipakai untuk distribusi air.Ada beberapa sistem irigasi untuk tanah kering, yaitu:
• (1) irigasi tetes (drip irrigation),
• (2) irigasi curah (sprinkler irrigation),
• (3) irigasi saluran terbuka (open ditch irrigation), dan
• (4) irigasi bawah permukaan (subsurface irrigation).


6. TEKNIK SISTEM IRIGASI
6.1 irigasi teknis
Salah satu prinsip pada jaringan irigasi teknis adalah pemisahan antara saluran irigasi/pembawa dan saluran pembuanglpematus. Ini berarti bahwa baik saluran pembawa maupun saluran pembuang bekerja sesuai dengan fungsinya masing-masing. Saluran pembawa mengalirkan air irigasi ke sawah-sawah dan saluran pembuang mengalirkan kelebihan air dari sawah sawah ke saluran pembuang.

Petak tersier menduduki fungsi sentral dalam jaringan irigasi teknis. Sebuah
petak tersier terdiri dari sejumlah sawah dengan luas keseluruhan yang umumnya berkisar antara 50 - 100 ha kadang-kadang sampai 150 ha.Jaringan saluran tersier dan kuarter mengalirkan air kesawah. Kelebihan air ditampung didalam suatu jaringan saluran pembuang tersier dan kuarter
dan selanjutnya dialirkan ke jaringan pembuang sekunder dan kuarter.

Jaringan irigasi teknis yang didasarkan pada prinsip-prinsi di atas adalah cara pembagian air yang paling efisien dengan mempertimbangkan waktuwaktu merosotnya persediaan air serta kebutuhan petani. Jaringan irigasi teknis memungkinkan dilakukannya pengukuran aliran, pembagian air irigasi dan pembuangan air lebih secara efisien. Jika petak tersier hanya memperoleh air apda satu tempat saja dari jaringan utama, hal ini akan memerlukan jumlah bangunan yang lebih sedikit di saluran primer, ekspoitasi yang lebih baik dan pemeliharaan yang lebihmurah. Kesalahan dalam pengelolaan air di petak-petak tersier juga tidak akan mempengaruhi pembagian air di jaringan utama.

6.2 irigasi non teknis
Dalam jaringan irigasi sederhana(non teknis), pembagian air tidak diukur atai diatur sehingga air lebih akan mengalir ke saluran pembuang. Persediaan air biasanya berlimpah dan kemiringan berkisar antara sedang dan curam. Oleh karena itu hampir-hampir tidak diperlukan teknik yang sulit untuk pembagian air Jarihgan irigasi ini walaupun mudah diorganisir namun memiliki kelemahankelemahan serius yakni :

1. Ada pemborosan air dan karena pada umumnya jaringan ini terletak di
daerah yang tinggi, air yang terbuang tidak selalu dapat mencapai daerah rendah yang subur.

2. Terdapat banyak pengendapan yang memerlukan lebih banyak biaya dari penduduk karena tiap desa membuat jaringan dan pengambilan sendiri-sendiri.

3. Karena bangunan penangkap air bukan bangunan tetap/permanen, maka umumya pendek.

6.3 irigasi semi teknis
Pada jaringan irigasi semi teknis, bangunan bendungnya terletak di sungai lengkap dengan pintu pengambilan tanpa bangunan pengukur di bagian hilirnya. Beberapa bangunan permanen biasanya juga sudah dibangun dijaringan saluran. Sistim pembagian air biasanya serupa dengan jaringan sederhana .Bangunan pengambilan dipakai untuk melayani/mengairi daerah yang lebih luas dari pada daerah layanan jaringan sederhana.

BIOMASS

Energi Alternatif itu Bernama Biomassa


Masalah lingkungan sebenarnya memiliki solusi yang berasal dari lingkungan juga. Problem gas rumah kaca dan krisis energi misalnya, bisa dijawab dengan biomassa yang asalmulanya dari alam. Bagaimana bisa?

Gas rumah kaca yang disebabkan oleh bahan bakar fosil, seperti karbon dioksida ketika dilepaskan di atmosfir, keberadaannya akan menghalangi panas yang akan meninggalkan bumi sehingga akan meningkatkan temperature bumi. Bila hal ini terjadi maka maka akan terjadi perubahan iklim yang akan mempengaruhi kualitas kehidupan di lingkungan kita. Selain disebabkan oleh CO2, gas berikut juga memiliki kontribusi dalam pemanasan global, methane (CH4) dan nitrous oksida (N2O). Pembakaran biomassa sebenarnya menghasilkan CO2 tetapi karbon dioksida yang di hasilkan akan distabilisasi dengan serap kembali oleh tumbuhan, sehingga tidak ada penimbuan karbon dioksida dalam atmosfer dan keberadaannya terus seimbang.

Pengingkatan Temperatur

Tahun 1998 merupakan tahun dimana terjadi peningkatan terbesar temperatur. Peningkatan temperatur ini menyebabkan pencairan es di kutub sehingga volume lautan meningkat dan ketingian permukaan laut meningkat 10 sampai 25 cm. Bahkan di prediksi kan tahun 2100 temperatur akan meningkat secara tajam hingga mencapai 6 derajat celcius. Dampak itulah yangmemicu terjadinya bencana alam yang akan menurunkan kualitas hidup manusia.

Untuk mencegah berbagai macam dampak dari pemanasan global, dapat dilakukan dengan mengurangi atau menghentikan proses yang paling besar dalam memicu gas rumah kaca tersebut yaitu pembakaran bahan baker fosil. Pembakaran bahan baker berkaitan erat dengan pemenuhan sector energi bagi peningkatan perekonomian suatu negara. Pengembangan biomasa sebagai sumber energi untuk substitusi bahan bakar bisa menjadi solusi untuk mengurangi beredarnya gas rumah kaca di atmosfer. Dengan penggunaan biomassa sebagai sumber energi maka konsentrasi CO2 dalam atmosfer akan seimbang. Pada waktu yang sama manusia makin menyebabkan peningkatan rumah kaca dengan penebangan hutan secara luas (deforestrisasi) sehingga mengurangi kemampuannya untuk menyerap gas CO2. disamping itu hasil hutan yang diperoleh dibakar dan menghasilkan CO2 dan beberapa partikulat matter. Konferensi tentang perubahan iklim telah dilakukan di Kyoto, Jepang pada tahun 1997.

Potensi Biomassa di Indonesia

Indonesia, Sebagai negara agraris yang beriklim tropis memiliki beberapa sumber energi terbarukan yang berpotensi besar, antara lain : energi hidro dan mikrohidro, energi geotermal, energi biomassa, energi surya dan energi angin.

Potensi biomassa yang besar di negara, hingga mencapai 49.81 GW tidak sebanding dengan kapasitas terpasang sebesar 302.4 MW. Bila kita maksimalkan potensi yang ada dengan menambah jumlah kapasitas terpasang, maka akan membantu bahan bakar fosil yang selama ini menjadi tumpuan dari penggunaan energi. Hal ini akan membantu perekonomian yang selama ini menjadi boros akibat dari anggaran subsidi bahan bakar minyak yang jumlahnya melebihi anggaran sektor lainnya.

Energi biomassa menjadi penting bila dibandingkan dengan energi terbaharukan karena proses konversi menjadi energi listrik memiliki investasi yang lebih murah bila di bandingkan dengan jenis sumber energi terbaharukan lainnya. Hal inilah yang menjadi kelebihan biomassa dibandingkan dengan energi lainnya. Proses energi biomassa sendiri memanfaatkan energi matahari untuk merubah energi panas menjadi karbohidrat melalui proses fotosintesis yang selanjutnya diubah kembali menjadi energi panas.

Konversi Biomassa

Penggunaan biomassa untuk menghasilkan panas secara sederhana sebenarnya telah dilakukan oleh nenek moyang kita beberapa abad yang lalu. Penerapannya masih sangat sederhana, biomassa langsung dibakar dan menghasilkan panas. Di zaman modern sekarang ini panas hasil pembakaran akan dikonversi menjadi energi listrik melali turbin dan generator. Panas hasil pembakaran biomassa akan menghasilkan uap dalam boiler. Uap akan ditransfer kedalam turbin sehingga akan menghasilkan putaran dan menggerakan generator. Putaran dari turbin dikonversi menjadi energi listrik melalui magnet magnet dalam generator. Pembakaran langsung terhadap biomassa memiliki kelemahan, sehingga pada penerapan saat ini mulai menerapkan beberapa teknologi untuk meningkatkanmanfaat biomassa sebagai bahan bakar. Beberapa penerapan teknologi konversi yaitu :

• Densifikasi

Praktek yang mudah untuk meningkatkan manfaat biomassa adalah membentuk menjadi briket atau pellet. Briket atau pellet akan memudahkan dalam penanganan biomassa. Tujuannya adalah untuk meningkatkan densitas dan memudahkan penyimpanan dan pengangkutan. Secara umum densifikasi (pembentukan briket atau pellet) mempunyai beberapa keuntungan (bhattacharya dkk, 1996) yaitu : menaikan nilai kalor per unit volume, mudah disimpan dan diangkut, mempunyai ukuran dan kualitas yang seragam.

• Karbonisasi

Karbonisasi merupakan suatu proses untuk mengkonversi bahan orgranik menjadi arang . pada proses karbonisasi akan melepaskan zat yang mudah terbakar seperti CO, CH4, H2, formaldehid, methana, formik dan acetil acid serta zat yang tidak terbakar seperti seperti CO2, H2O dan tar cair. Gas-gas yang dilepaskan pada proses ini mempunyai nilai kalor yang tinggi dan dapat digunakan untuk memenuhi kebutuhan kalor pada proses karbonisasi.

• Pirolisis

Pirolisis atau bisa di sebut thermolisis adalah proses dekomposisi kimia dengan menggunakan pemanasan tanpa kehadiran oksigen. Proses ini sebenarnya bagian dari proses karbonisasi yaitu roses untukmemperoleh karbon atau aran, tetapi sebagian menyebut pada proses pirolisis merupakan high temperature carbonization (HTC), lebih dari 500 oC. Proses pirolisis menghasilkan produk berupa bahan bakar padat yaitu karbon, cairan berupa campuran tar dan beberapa zat lainnya. Produk lainn adalah gas berupa karbon dioksida (CO2), metana (CH4) dan beberapa gas yang memiliki kandungan kecil.

• Anaerobic digestion

Proses anaerobic igestion yaitu proses dengan melibatkan mikroorganisme tanpa kehadiran oksigen dalam suatu digester. Proses ini menghasilkan gas produk berupa metana (CH4) dan karbon dioksida (CO2) serta beberapa gas yang jumlahnya kecil, seperti H2, N2, dan H2S. Proses ini bisa diklasifikasikan menjadi dua macam yaitu anaerobic digestion kering dan basah. Perbedaan dari kedua proses anaerobik ini adalah kandungan biomassa dalam campuran air. pada anaerobik kering memiliki kandungan biomassa 25 – 30 % sedangkan untuk jenis basah memiliki kandungan biomassa kurang dari 15 % (Sing dan Misra, 2005).

• Gasifikasi

Gasifikasi adalah suatu proses konversi untuk merubah material baik cair maupun pada menjadi bahan bakar cair dengan menggunakan temperatur tinggi. Proses gasifikasi menghasilkan produk bahan bakar cair yang bersih dan efisien daripada pembkaran secara langsung, yaitu hidrogen dan karbon monoksida. Gas hasil dapat di bakar secara langsung pada internal combustion engine atau eaktor pembakaran. Melalui proses Fische-Tropsch gas hasil gasifikasi dapat di ekstak menjadi metanol.

Political Will

Semua potensi tersebut tidak bernilai tanpa adanya dukungan dan political will dari pemerintah serta masyarakat luas. Pembentukan tim nasional pengembangan bahan bakar nabati (BBN) dengan menerbitkan blue print dan road map bidang energi untuk mewujudkan pengembangan BBN merupakan langkah yang strategis sehingga dapat dicapai kemandirian energi melalui pengembangan biomassa. Peran serta masyarakat akan sangat membantu dalam pengimplemetasian pengembangan tanaman penghasil bioenergi, sehingga pada akhirnya bangsa ini mampu keluar dari krisis energi dengan pasokan energi bahan bakar nabati yang berkelanjutan













Sumber : http://netsains.com/2008/03/energi-alternatif-itu-bernama-biomassa/#

Biomassa, Energi Alternatif dari Limbah Industri Pangan

Ketergantungan yang tinggi terhadap bahan bakar minyak (BBM) membuat harga energi yang tidak bisa diperbarui ini terus meningkat. Lonjakan harga BBM membuat banyak negara kelimpungan. Meski telah lama dilakukan studi untuk mencari sumber energi terbarukan, belum ada solusi nyata yang benar-benar bisa menyamai BBM. Yang terbaru dan sudah mulai dikomersialkan adalah pemanfaatan minyak sawit dan buah jarak untuk menghasilkan biofuel. Upaya untuk mencari sumber energi terbarukan tidak berhenti sampai di situ. Kini, para ilmuwan tengah berupaya menafaatkan limbah industri pangan untuk menghasilkan energi. Biomassa namanya. Biomassa merupakan energi yang dihasilkan dari limbah industri pangan, seperti limbah minyak kelapa sawit (CPO), limbah padi dan limbah pabrik gula.

Selain itu biomassa juga dapat dikembangkan dengan memanfaatkan limbah pengembangan bioetanol (tebu dan singkong), limbah biodiesel dan biooil (sawit dan jati). Pengembangan biomassa yang memanfaatkan limbah pertanian, kehutanan maupun industri perkebunan, bukan bahan pangan, merupakan alternatif dalam pengembangan energi dari sumber terbarukan yang akan menjadi pengganti BBM. Pasalnya, di abad 21 ini salah satu masalah global yang sedang dihadapi banyak negara adalah kompetisi antara kecukupan pangan, jaminan ketersediaan energi dan perlindungan lingkungan. Mengingat pentingnya pengembangan biomasa itu, Jepang telah mengajak beberapa negara, termasuk Indonesia untuk bersama-sama meneliti dan mengembangkan energi tersebut.

Kerja Sama Badan Pengkajian dan Penerapan Teknologi (BPPT) dan National Institute for Advance Industrial Science and Technology (AIST) Jepang menandatangani nota kesepahaman (MoU) tentang pengembangan biomassa di Indonesia. Melalui kerja sama tersebut, kedua pihak akan meneliti, mengembangkan, dan merekayasa teknologi biomassa untuk pembangkit listrik. Menurut Deputi Bidang Teknologi Agroindustri dan Bioteknologi BPPT Wahono Sumaryono, diperkirakan jumlah limbah dari industri pengolahan hasil pertanian dan kehutanan mencapai 12 juta ton per tahunnya. Dengan ketersediaan limbah tersebut, menurut dia, sebenarnya nilai potensial biomassa yang bisa dikembangkan di Indonesia mencapai 49,81 giga watt (GW). Sementara itu, yang saat ini telah dikembangkan nilainya baru mencapai 0,3 GW.

“Biomassa, saat ini memang lebih banyak dikembangkan di Indonesia karena di negara-negara maju seperti Amerika Serikat, Jerman dan Jepang, teknologi itu masih dalam tahap penelitian. Dan kemungkinan energi biomassa baru bisa dikomersialisasi mulai 8 – 10 tahun mendatang,” kata Wahono usai penandatangan MoU dengan AIST di Jakarta. Menurut dia, pada 2005 lalu, jumlah limbah industri hasil pertanian, kehutanan yang telah dikembangkan untuk biomassa di Indonesia baru sekitar 5,2 juta ton. Kerja sama pengembangan biomassa antara Indonesia melalui BPPT dengan AIST tersebut merupakan implementasi dari Prakarsa Biomassa Asia. Inisiatif ini melibatkan negara-negara di kawasan Asia yang kaya akan sumber biomassa.

Potensial Dalam kerja sama tersebut, AIST akan didukung oleh New Energy and Industrial Technology Development Organization (NEDO). Menurut Direktur Pusat Riset Teknologi Biomassa AIST Kinya Sakanissi, Indonesia merupakan salah satu negara yang sangat berpotensi mengembangkan biomassa di Asia. Pasalnya, Indonesia memiliki daerah pertanian yang luas. Di samping itu, pengembangan biomassa di Indonesia juga sangat diperlukan untuk menjaga ketahanan pangan nasional. Karena pemanfaatan tebu dan singkong untuk bioetanol terkait juga dengan kebutuhan masyarakat untuk bahan pangan.

Dengan demikian, pengembangan biomassa dengan memanfaatkan berbagai limbah, seperti limbah pertanian, kehutanan dan industri perkebunan akan lebih menguntungkan. “Selain itu, energi biomassa juga merupakan energi yang ramah lingkungan karena tidak menimbulkan emisi gas buang,” kata Sakanissi. Dalam rangka pengembangan sumber energi alternatif penggati BBM, Pemerintah Indonesia telah menerbitkan Peraturan Presiden (Perpres) N0.5 Tahun 2006 tentang Kebijakan Energi Nasional (KEN) dengan merujuk pada pemanfaatan biofuel dan biomassa. Dalam kaitan itu, pemerintah telah mengembangkan bahan bakar nabati (BBN) sebagai program nasional yang melibatkan seluruh stakeholder, termasuk pemerintah daerah (pemda).



































Sumber : http://www.alpensteel.com/article/60-108-energi-bio-fuel/749--biomassa-energi-alternatif-dari-limbah-industri-pangan.html

Ulas Energi: Biomassa sebagai Sumber Energi Alternatif

Penggunaan energi besar-besaran telah membuat manusia mengalami krisis energi. Ini disebabkan ketergantungan terhadap bahan bakar fosil seperti minyak bumi dan gas alam yang sangat tinggi. Sebagaimana kita ketahui, bahan bakar fosil merupakan sumber daya alam yang tidak terbarukan. Untuk mengatasi krisis energi masa depan, beberapa alternatif sumber energi mulai dikembangkan, salah satunya adalah energi biomassa.



Biomassa, dalam industri produksi energi, merujuk pada bahan biologis yang hidup atau baru mati yang dapat digunakan sebagai sumber bahan bakar atau untuk produksi industrial. Umumnya biomassa merujuk pada materi tumbuhan yang dipelihara untuk digunakan sebagai biofuel, tapi dapat juga mencakup materi tumbuhan atau hewan yang digunakan untuk produksi serat, bahan kimia, atau panas. Biomassa dapat pula meliputi limbah terbiodegradasi yang dapat dibakar sebagai bahan bakar. Biomassa tidak mencakup materi organik yang telah tertransformasi oleh proses geologis menjadi zat seperti batu bara atau minyak bumi.



Pada awalnya, biomassa dikenal sebagai sumber energi ketika manusia membakar kayu untuk memasak makanan atau menghangatkan tubuh pada musim dingin. Kayu merupakan sumber energi biomassa yang masih lazim digunakan tetapi sumber energi biomassa lain termasuk bahan makanan hasil panen, rumput dan tanaman lain, limbah dan residu pertanian atau pengolahan hutan, komponen organik limbah rumah tangga dan industri, juga gas metana sebagai hasil dari timbunan sampah.



Sebagai bahan bakar, biomassa perlu diolah terlebih dahulu agar dapat dengan mudah dipergunakan. Proses ini dikenal sebagai konversi biomassa. Beberapa proses tersebut adalah dengan mengubah biomassa menjadi briket sehingga mudah disimpan, diangkut, dan mempunyai ukuran dan kualitas yang seragam. Jenis konversi lain adalah mengubah biomassa melalui proses kimia dan fisika seperti anaerobic digestion (peruraian tanpa bantuan oksigen) yang menghasilkan gas metana, pirolisis (dekomposisi menggunakan panas) yang menghasilkan produk bahan bakar padat berupa karbon dan produk lain berupa karbon dioksida dan metana.



Studi tentang biomassa telah banyak dilakukan di negara maju seperti Jepang, Jerman, Inggris dan sebagainya. Hanya saja untuk menjadikan biomassa sebagai produk komersial, masih diperlukan langkah dan perhatian lebih lanjut, baik dari kalangan ilmuwan, masyarakat maupun pemerintah. Ketergantungan terhadap bahan bakar fosil yang sudah membudaya harus pelan-pelan dialihkan ke sumber energi lain yang terbarukan dan ramah lingkungan. Namun dari alternatif-alternatif seperti yang telah disebutkan, tentunya langkah terbaik adalah dengan menghemat pemakaian energi, apapun itu bentuknya.







































SUMBER : HTTP://ULASINGKAT.BLOGSPOT.COM/2009/03/ULAS-ENERGI-BIOMASSA-SEBAGAI-SUMBER.HTML

Energi Biomassa

Biomassa sangat beragam jenisnya yang pada dasarnya merupakan hasil produksi dari makhluk hidup. Biomassa dapat berasal dari tanaman perkebunan atau pertanian, hutan, peternakan atau bahkan sampah. Biomassa (bahan organik) dapat digunakan untuk menyediakan panas, membuat bahan bakar, dan membangkitkan listrik, hat ini disebut bioenergi. Bioenergi berada pada level kedua setelah tenaga air dalam produksi energi primer terbarukan di Amerika Serikat.

Untuk kepentingan khusus, pemanfaatan biomassa menjadi solusi yang sangat menjanjikan untuk permasalahan sampah di kota-kota besar. Pemanfaatan sampah sebagai biomassa menjadi tenaga listrik meiaitji proses pembakaran langsung (direct cornbustion) atau metalui proses pembuatan gas metana (gasifikasi) dapat menjadi solusi, walaupun proyek ini lebih mahal dibandingkan proyek pembangkit listrik lain untuk kapasitas yang setara.

Pemanfaatan energi biomassa dapat dilakukan dengan berbagai cara. Dewasa ini teknologi pemanfaatan energi biomassa yang telah dikembangkan terdiri dari :

1. Pembakaran langsung (direct combustion) dalam bentuk pemanfaatan panas.

Pemanfaatan panas biomassa telah dikenal sejak dulu seperti pemanfaatan kayu bakar. Pemanfaatan yang cukup besar umumnya untuk menghasilkan uap pada pembangkitan listrik atau proses manufaktur. Dalam sistem pembangkit, kerja turbin biasanya memanfaatakan ekspansi uap bertekanan dan bertemperatur tinggi untuk menggerakkan generator. Di industri kayu dan kertas, serpihan kayu terkadang langsung dimasukkan ke boiler untuk menghasilkan uap untuk proses manufaktur atau menghangatkan ruangan. Beberapa sistem pembangkit berbahan bakar batubara menggunakan biomassa sebagai sumber energi tambahan dalam boiler efisiensi tinggi untuk mengurangi emisi.

2. Konversi menjadi bahan bakar cair.

Dua bahan bakar bio yang paling umum adalah ethanol dan biodiesel. Ethanol merupakan alkohol yang dibuat dengan fermentasi biomassa dengan kandungan hidrokarbon yang tinggi seperti jagung metaldi proses yang sama untuk membuat bir. Ethanol paling sering digunakan sebagai aditif bahan bakar untuk mengurangi emisi CO dan asap lainnya dari kendaraan. Biodiesel merupakan ester yang dibuat menggunakan minyak tanaman, lemak binatang, ganggang, atau bahkan minyak goreng bekas. Biodiesel dapat digunakan sebagai aditif diesel untuk mengurangi emisi kendaraan atau dalam bentuk murninya sebagai bahan bakar kendaraan

3. Pemanfaatan Gas Biomassa

Pemanfaatan gas biomassa skala kecil yang banyak diaplikasikan oleh masyarakat adalah pemanfaatan gas metana hasil fermentasil yang langsung dibakar untuk dimanfaatkan panasnya. Pada skala yang lebih maju pemanfaatan gas biomassa dilakukan melalui sistem gasifikasi menggunakan temperatur tinggi untuk mengubah biomassa menjadi gas (campuran dari hidrogen, CO dan metana).

Salah satu contoh pemanfaatan tersebut adalah penggunaan sekam padi pada Pembangkit Listrik Tenaga Diesel. Pembangkit Listrik Tenaga Diesel (PLTD) komersial pertama yang menggunakan. bahan bakar sekam padi berada di penggilingan padi rnifik PT (Persero) Pertani di Desa Haurgeulis, Keeamatan Haurgaulis, Kabupaten Indramayu. PLTD berkekuatan 1 x 100 kilowatt (kw) tersebut dibangun PT Indonesia Power dan PT Pertani.

Prinsip keda PLTD berbahan bakar sekam padi itu adalah mencampurkan gas hasil gasifikasi sekam padi pada temperatur tinggi dengan bahan bakar minyak (BBM) di dalam ruang bakar motor diesel yang menggerakkan turbin untuk menghasii'kan tenaga listrik. Pencampuran BBM dengan gas sekam padi dapat menghemat pemakaian BBIVi hingga 80 persen dari jumlah pemakaian semula, sehingga biaya operasional untuk membangkitkan listrik dengan daya yang

sama dapat berkurang jauh. Sebagai gambaran, jika PLTD berkapasitas 100 kW dioperasikan penuh dengan menggunakan BBM, dibutuhkan 0,3 liter BBM per kWh (kilowatt hour). Sementara jika ditambahkan gas sekam padi, hanya dibutuhkan 0,06 liter per kWh ditambah sekam padi sebanyak 1,5 kg per kWh.

Sistem penanganan material biomassa, merupakan bagian yang cukup besar dalam modal investasi dan biaya operasi dalam fasilitas konversi energi bio. Kebutuhannya tergantung pada tipe biomassa yang akan diolah dalam teknologi konversi seperti hainya kebutuhan gudang cadangan makanan, diantaranya penyimpanan biomassa, penanganan, pengangkutan, pengurangan ukuran, pembersihan, pengeringan serta peralatan.

























Sumber: http://www.energiterbarukan.net/index.php?option=com_content&task=view&id=36&Itemid=57

Biomassa Sebagai Sumber Energi Terbarukan





Jagung sebagai bahan dasar ethanol, contoh penggunaan biomassa sebagai sumber energi

Sejumlah pakar berpendapat, penggunaan biomassa sebagai sumber energi terbarukan merupakan jalan keluar dari ketergantungan manusia pada bahan bakar fossil.



Apa yang sebenarnya dimaksud dengan biomassa? Dalam sektor energi, biomassa merujuk pada bahan biologis yang hidup atau baru mati yang dapat digunakan sebagai sumber bahan bakar.

Biomassa dapat digunakan secara langsung maupun tidak langsung. Dalam penggunaan tidak langsung, biomassa diolah menjadi bahan bakar. Contohnya, kelapa sawit yang diolah terlebih dahulu menjadi biodiesel untuk kemudian digunakan sebagai bahan bakar.



Sebelum mengenal bahan bakar fossil, manusia sudah menggunakan biomassa sebagai sumber energi. Misalnya dengan memakai kayu atau kotoran hewan untuk menyalakan api unggun. Sejak manusia beralih pada minyak, gas bumi atau batu bara untuk menghasilkan tenaga, penggunaan biomassa tergeser dari kehidupan manusia. Namun, persediaan bahan bakar fossil sangat terbatas. Para ilmuwan memperkirakan dalam hitungan tahun persediaan minyak dunia akan terkuras habis. Karena itu penggunaan sumber energi alternatif kini digiatkan, termasuk di antaranya penggunaan biomassa.



Biomassa dari Bahan Baku Pangan



Gandum, tebu dan jagung adalah contoh bahan pangan yang juga dapat diolah menjadi energi dari biomassa. Energi tersebut tergolong energi ramah lingkungan yang bahan dasarnya disediakan alam. Namun, penggunaan energi dari biomassa kadang membawa dampak sampingan yang tidak diinginkan. Salah satunya adalah naiknya harga bahan baku pangan.



Penyebabnya macam-macam. Di Jerman misalnya, produksi listrik biomassa mendapat subsidi pemerintah kata ahli biologi Dr. Andre Baumann:

“Ini memicu persaingan antar petani yang menanam gandum untuk pangan dan petani biomassa. Selama ini, produsen gandum untuk biomassa mendapat keuntungan lebih besar daripada petani biasa. Baru belakangan ini, dengan naiknya harga untuk susu dan gandum, petani biasa dapat bersaing dengan petani biomassa. Produsen biogas tak lagi dapat membeli bahan dasar gandum dengan harga murah seperti dalam lima tahun terakhir.“



Di Jerman, 100 kilogram gandum menghasilkan energi biomassa seharga 25 Euro. Tapi bila gandum tersebut dijual sebagai bahan baku pangan, harganya hanya 18 Euro. Kini di sejumlah negara muncul kekuatiran bahwa para petani bahan pangan beralih ke produksi tanaman untuk biomassa. Padahal, produksi bahan pangan saat ini saja belum mencukupi untuk menutup kebutuhan pangan dunia.



Dampak Lingkungan



Dampak lain penanaman produk pertanian untuk biomassa adalah kerusakan pada alam. Andre Baumann yang menjabat ketua Organisasi Lingkungan Hidup Jerman NABU menegaskan produksi tanaman untuk biomassa harus memenuhi standar amdal:



„Biomassa sudah digunakan selama ratusan tahun. Tapi dulu produk biomassa tidak diangkut dengan truk atau pesawat sampai tempat tujuan. Sekam gandum atau sisa tanaman lainnya digunakan di pertanian yang sama sehingga membentuk lingkaran yang tertutup. Tapi sekarang, manusia memakai truk dan kapal laut untuk mengangkut kelapa sawit dari kawasan tropis ke Eropa, ini menyebabkan siklus penggunaan biomassa tidak lagi tertutup.“



Dampak produksi tanaman untuk biomassa juga mulai dirasakan di kawasan lain dunia. Contohnya di Benua Hitam Afrika. Pakar lingkungan dari Institut Pertanian untuk Kawasan Tropis dan Subtropis Universitas Hohenheim Joachim Sauberborn menjelaskan „Di Afrika sumber daya alam yang dapat diperbarui luas digunakan. Banyak warga masih memakai kayu untuk memasak. Namun, dampak negatifnya adalah kerusakan kawasan hutan karena penebangan yang tidak terkontrol. Hilangnya vegetasi hutan menyebabkan pengikisan lapisan tanah yang subur. Akibatnya, lahan pertanian pun makin berkurang.“



Untuk mendapatkan lahan pertanian baru, penduduk Afrika membuka hutan. Akibatnya siklus kerusakan alam terus berlanjut. Penebangan pohon-pohon untuk lahan pertanian menyebabkan karbondioksida dilepaskan ke udara. Padahal karbondioksida atau CO2 adalah salah satu gas rumah kaca penyebab pemanasan global.



Sistem Pertanian Berkelanjutan



Karena itu, pakar biologi Andre Baumann menyarankan agar petani menggunakan sistem pertanian yang berkelanjutan: „Istilah ini sebenarnya berasal dari sektor perhutanan. Maksudnya, penebangan kayu disesuaikan dengan regenerasi hutan, jadi jumlah pohon yang ditebang sesuai dengan pohon baru yang ditanam. Dalam seratus tahun terakhir, sistem pertanian berubah karena globalisasi. Negara industri mengimpor bahan pangan dan produk pertanian dari negara berkembang. Akibatnya muncul masalah lingungkan baik di negara berkembang maupuan industri.



Andre Baumann memberikan salah satu contoh. 12,5 persen lahan pertanian yang digunakan untuk memenuhi kebutuhan pangan Jerman berada di luar negeri. Produk pangan yang diimpor, mulai dari buah-buahan sampai makanan ternak menghasilkan ampas dalam jumlah besar yang tidak dapat diolah oleh sistem daur ulang Jerman. Kerusakan alam juga terjadi bila produk pertanian tersebut berasal dari lahan yang dulunya adalah hutan. Belum lagi dengan emisi karbondioksida yang dihasilkan saat produk tersebut ditranspor dari negara asalnya ke Jerman.



Misalnya, biodiesel dari kelapa sawit. Selain tersedia dalam jumlah banyak, dapat diperbarui dan menghasilkan energi yang ramah lingkungan, penggunaan biodiesel dari kelapa sawit dapat meningkatkan efisiensi pembakaran mesin, termasuk mesin kendaraan bermotor. Biodiesel jenis ini mempunyai kandungan asetan tinggi, bebas dari sulfur dan mampu dioperasikan di musim dingin, bahkan saat suhu mencapai minus 20 derajat Celcius sekalipun, sehingga cocok digunakan di Jerman.



Namun, pakar biologi Andre Baumann memperingatkan jangan sampai kebutuhan energi di Jerman merusak alam di negara produsen biomassa tersebut.

„Pemerintah menggunakan uang pajak rakyat untuk memberi subsidi pada produk biomassa. Padahal produk itu menyebabkan rusaknya hutan tropis di bagian lain dunia. Misalnya, kelapa sawit yang berasal dari perkebunan yang sebelumnya merupakan hutan. Produk tersebut harus ditranspor ribuan kilometer ke Jerman. Di sini, kelapa sawit diolah menjadi biogas dan ampasnya digunakan sebagai pupuk. Ini sama sekali bukan sistem pertanian berkelanjutan. Sistem ini tidak bisa dipertanggung-jawabkan secara sosial maupun ekologis.“



Masa Depan Biomassa Sebagai Bahan Bakar



Lalu bagaimana masa depan penggunaan energi dari biomassa? Saat ini, bioenergi hanya memegang pangsa 13 persen dari keseluruhan sumber energi dunia. Menurut pakar biologi Andre Baumann kunci untuk meningkatkan efisiensi energi bukan dengan memperluas produksi tanaman untuk biomassa. Sebaliknya, penggunaan energi keseluruhanlah yang perlu dikurangi. (zpr/zer)











Sumber : http://www.dw-world.de/dw/article/0,,3057079_page_3,00.html

Energi alternatif

Energi alternatif adalah istilah yang merujuk kepada semua energi yang dapat digunakan yang bertujuan untuk menggantikan bahan bakar konvensional tanpa akibat yang tidak diharapkan dari hal tersebut. Umumnya, istilah ini digunakan untuk mengurangi penggunaan bahan bakar hidrokarbon yang mengakibatkan kerusakan lingkungan akibat emisi karbon dioksida yang tinggi, yang berkontribusi besar terhadap pemanasan global berdasarkan Intergovernmental Panel on Climate Change. Selama beberapa tahun, apa yang sebenarnya dimaksud sebagai energi alternatif telah berubah akibat banyaknya pilihan energi yang bisa dipilih yang tujuan yang berbeda dalam penggunaannya.

Istilah "alternatif" merujuk kepada suatu teknologi selain teknologi yang digunakan pada bahan bakar fosil untuk menghasilkan energi. Teknologi alternatif yang digunakan untuk menghasilkan energi dengan mengatasi masalah dan tidak menghasilkan masalah seperti penggunaan bahan bakar fosil.

Oxford Dictionary mendefinisikan energi alternatif sebagai energi yang digunakan bertujuan untuk menghentikan penggunaan sumber daya alam atau pengrusakan lingkungan.

Dalam sejarahnya, transisi penggunaan energi alternatif berdasarkan faktor ekonomi, hadirnya suatu sumber energi baru bertujuan untuk menggantikan sumber energi yang lama yang semakin langka dan mahal, tidak ekonomis lagi, atau tidak dapat diakses lagi.

Batu bara sebagai alternatif kayu

Berdasarkan catatan Norman F. Cantor, Eropa telah hidup di abad pertengahan dengan hutan yang sangat lebat. Setelah tahun 1200an, bangsa Eropa menjadi sangat terlatih dalam melakukan deforestasi dan di tahun 1500an mereka kehabisan kayu untuk pemanas ruangan dan memasak. Di masa tersebut, Eropa berada di ujung ketersediaan bahan bakar dan bencana nutrisi, hingga ditemukannya batu bara lunak dan pertanian kentang dan jagung menyelamatkan mereka dari bencana kelaparan.

Bahan bakar minyak sebagai aternatif minyak ikan paus

Minyak ikan paus adalah bahan bakar dominan di awal abad ke 19, namun di pertengahan abad, stok ikan paus berkurang dan harga minyak ikan paus meningkat tajam dan tidak dapat bersaing dengan sumber bahan bakar minyak yang murah dari Pennsylvania yang baru saja dikembangkan di tahun 1859.

Alkohol sebagai alternatif bahan bakar fosil

Di tahun 1917, Alexander Graham Bell mengusulkan etanol dari jagung dan bahan pangan lainnya sebagai bahan bakar pengganti batu bara dan minyak dan menyatakan bahwa dunia dekat dengan masa di mana kedua jenis bahan bakar tersebut akan segera habis. Sejak tahun 1970, Brazil telah memiliki program bahan bakar etanol yang menjadikan negara tersebut penghasil etanol kedua terbesar di dunia setelah Amerika Serikat dan eksportir terbesar dunia. Program etanol Brazil menggunakan peralatan modern dan bahan baku tebu yang murah sebagai bahan baku, dan residu yang dihasilkan dari proses tersebut digunakan sebagai sumber energi untuk proses berikutnya. Saat ini tidak ada lagi kendaraan pribadi di Brazil yang dijalankan dengan bensin murni. Di akhir tahun 2008 Brazil telah memiliki sedikitnya 35.000 stasiun pengisian bahan bakar dengan sedikitnya satu pompa etanol.

Etanol selulosit dapat diproduksi dari berbagai macam bahan pangan, dan melibatkan penggunaan seluruh bagian hasil pertanian. Pendekatan baru ini meningkatkan hasil etanol yang diproduksi dan mengurangi emisi karbon karena jumlah energi pertanian yang digunakan sama untuk sejumlah etanol yang lebih tinggi.

Gasifikasi batu bara sebagai alternatif bahan bakar minyak yang mahal

Di tahun 1970, pemerintahan Presiden Amerika Serikat Jimmy Carter mengusulkan gasifikasi batu bara sebagai alternatif bahan bakar minyak yang mahal yang sebagian besar diimpor. Program ini, termasuk Synthetic Fuels Corporation, terbengkalai ketika harga bahan bakar minyak turun di tahun 1980an.

Energi terbarukan sebagai alternatif energi tak terbarukan

Energi terbarukan adalah energi yang dihasilkan dari sumber alami, seperti cahaya matahari, angin, hujan, arus pasang surut, dan panas bumi, yang terbarui atau secara alami dapat muncul kembali setelah dipergunakan. Ketika dibandingkan dengan proses produksi energinya, terdapat perbedaan mendasar antara energi terbarukan dengan bahan bakar fosil. Proses produksi bahan bakar fosil sulit dan membutuhkan proses dengan peralatan, proses fisik dan kimia yang rumit. Di lain hal, energi alternatif dapat diproduksi dengan peralatan dasar dan proses alam yang sangat mendasar.



Bentuk energi alternatif saat ini

Energi alternatif yang bersahabat dengan lingkungan

Sumber energi terbarukan seperti biomassa kadang-kadang disebut sebagai alternatif untuk bahan bakar fosil yang membahayakan bagi ekologi, karena jika biomassa dikomersialkan dikhawatirkan akan membahayakan hutan sebagai penghasil biomassa terbesar (kayu juga merupakan biomassa). Energi terbarukan belum tentu energi alternatif dengan tujuan tersebut. Seperti contoh, di Belanda, yang pernah digunakan minyak kelapa sawit sebagai bahan bakar bio, saat ini dihentikan akibat bukti ilmiah bahwa penggunaannya menciptakan kerusakan lebih parah dibandingkan bahan bakar fosil, seperti kemungkinan ekspansi lahan kelapa sawit yang dapat menghabiskan hutan alami. Mengenai bahan bakar bio dari bahan pangan, realisasi mengkonversi seluruh hasil panen di Amerika Serikat hanya mampu menggantikan 16% bahan bakar mobil yang dibutuhkan, dan pemusnahan hutan hujan tropis, yang selama ini sebagai penyerap CO2, untuk dijadikan ladang penghasil bahan bakar bio, sangat jelas akan mengakibatkan efek negatif yang sangat signifikan bagi ekologi dan menghasilkan peningkatan harga bahan pangan akibat kompetisi pasar. Saat ini, alternatif terhadap bahan bakar bio berkelanjutan sedang diupayakan dalam bentuk etanol selulosit.

Alternatif "zero carbon"

Dari sudut pandang isu perubahan iklim, bahan bakar ekonomis rendah karbon adalah sumber alternatif untuk mengeliminasi emisi karbon dan metana. Demi tujuan ini, sumber energi terbarukan dan berkelanjutan seperti biomassa, dan hidrogen yang dihasilkan dari gas alam, tidak tersedia secara ekonomis untuk melawan peningkatan karbon secara global. Energi nuklir dan tehnik penangkapan dan penyimpanan karbon seperti teknologi batu bara bersih adalah teknologi energi alternatif yang rendah emisi karbonnya, namun tidak sesuai dengan tujuan bahwa energi alternatif harus tidak merusak lingkungan.

Alternatif kemandirian energi

Di Eropa, terdapat harapan untuk lebih mandiri dan tidak bergantung lagi terhadap suplai energi (minyak dan gas) dari Rusia, begitu juga di Amerika Serikat yang berharap terbebas dari impor minyak yang diproduksi oleh negara lain. Dari sudut pandang ini, gas alam domestik, bahan bakar fosil, adalah energi alternatif terhadap bahan bakar yang diimpor dari luar. Ini adalah sudut pandang T. Boone Pickens yang menjelaskan Pickens Plan untuk kemandirian energi, dan merefleksikan undang-undang di Negara Bagian Florida, Amerika Serikat. Meski gas alam tidaklah dapat diperbarui, namun dalam sudut pandang ini, hal tersebut adalah energi alternatif.

Konsep baru energi alternatif

Area penangkapan energi angin mengapung

Area penangkapan energi angin mengapung sama dengan area penangkapan energi angin biasa namun mengapung di tengah-tengah lautan. Area penangkapan energi angin lepas pantai dapat ditempatkan di perairan sedalam 40 meter. Keuntungan area penangkapan energi angin mengapung adalah kemampuannya menangkap energi angin di tengah lautan tanpa halangan bukit, pepohonan, dan bangunan; angin di tengah lautan dapat mencapai kecepatan dua kali kecepatan angin di daratan. Perusahaan energi Norwegia, StatoilHydro, akan melakukan percobaan pertama area penangkapan energi angin mengapung di musim gugur 2009.

Biogas hasil pencernaan

Biogas hasil pencernaan berhubungan dengan pemanfaatan gas metana yang dilepaskan ketika kotoran hewan membusuk. Gas ini dapat diperoleh dari sampah dan sistem saluran limbah. Sistem penghasil biogas digunakan untuk menghasilkan untuk memproses gas metana melalui bakteri atau dekomposer yang memecah biomassa dalam lingkungan atau kondisi anaerobik. Gas metana yang dikumpulkan dan dimurnikan dapat dimanfaatkan sebagai sumber energi alternatif.

Heliokultur

Heliokultur adalah proses memanen energi matahari menjadi bahan bakar dengan memindahkan karbon dioksida di atmosfer dengan memanfaatkan pertanian.

Energi alternatif dalam transportasi

Akibat peningkatan harga gas di tahun 2008 dengan peningkatan harga bahan bakar hingga 4 US dollar per galon ketika itu, telah ada gerakan untuk mengembangkan kendaraan dengan efisiensi bahan bakar yang lebih tinggi serta kendaraan dengan bahan bakar alternatif. Menanggapi hal tersebut, banyak perusahaan kecil meningkatkan penelitian dan pengembangan untuk secara radikal mengubah cara menggerakkan kendaraan pribadi. Dan saat ini, kendaraan Hybrid dan bertenaga baterai telah tersedia secara komersial dan dapat diterima masyarakat secara luas di seluruh dunia.

































Sumber : http://id.wikipedia.org/wiki/Energi_alternatif

Biofuel

Bahan bakar hayati atau biofuel adalah setiap bahan bakar baik padatan, cairan ataupun gas yang dihasilkan dari bahan-bahan organik. Biofuel dapat dihasilkan secara langsung dari tanaman atau secara tidak langsung dari limbah industri, komersial, domestik atau pertanian. Ada tiga cara untuk pembuatan biofuel: pembakaran limbah organik kering (seperti buangan rumah tangga, limbah industri dan pertanian); fermentasi limbah basah (seperti kotoran hewan) tanpa oksigen untuk menghasilkan biogas (mengandung hingga 60 persen metana), atau fermentasi tebu atau jagung untuk menghasilkan alkohol dan ester; dan energi dari hutan (menghasilkan kayu dari tanaman yang cepat tumbuh sebagai bahan bakar).

Proses fermentasi menghasilkan dua tipe biofuel: alkohol dan ester. Bahan-bahan ini secara teori dapat digunakan untuk menggantikan bahan bakar fosil tetapi karena kadang-kadang diperlukan perubahan besar pada mesin, biofuel biasanya dicampur dengan bahan bakar fosil. Uni Eropa merencanakan 5,75 persen etanol yang dihasilkan dari gandum, bit, kentang atau jagung ditambahkan pada bahan bakar fosil pada tahun 2010 dan 20 persen pada 2020. Sekitar seperempat bahan bakar transportasi di Brazil tahun 2002 adalah etanol.

Biofuel menawarkan kemungkinan memproduksi energi tanpa meningkatkan kadar karbon di atmosfir karena berbagai tanaman yang digunakan untuk memproduksi biofuel mengurangi kadar karbondioksida di atmosfir, tidak seperti bahan bakar fosil yang mengembalikan karbon yang tersimpan di bawah permukaan tanah selama jutaan tahun ke udara. Dengan begitu biofuel lebih bersifat carbon neutral dan sedikit meningkatkan konsentrasi gas-gas rumah kaca di atmosfir (meski timbul keraguan apakah keuntungan ini bisa dicapai di dalam prakteknya). Penggunaan biofuel mengurangi pula ketergantungan pada minyak bumi serta meningkatkan keamanan energi. [1]

Ada dua strategi umum untuk memproduksi biofuel. Strategi pertama adalah menanam tanaman yang mengandung gula (tebu, bit gula, dan sorgum manis [2]) atau tanaman yang mengandung pati/polisakarida (jagung), lalu menggunakan fermentasi ragi untuk memproduksi etil alkohol. Strategi kedua adalah menanam berbagai tanaman yang kadar minyak sayur/nabatinya tinggi seperti kelapa sawit, kedelai, alga, atau jathropa. Saat dipanaskan, maka keviskositasan minyak nabati akan berkurang dan bisa langsung dibakar di dalam mesin diesel, atau minyak nabati bisa diproses secara kimia untuk menghasilkan bahan bakar seperti biodiesel. Kayu dan produk-produk sampingannya bisa dikonversi menjadi biofuel seperti gas kayu, metanol atau bahan bakar etanol.

ENERGY BAHAN BIO DARI LIMBAH

Penggunaan limbah biomassa untuk memproduksi energi mampu mengurangi berbagai permasalahan manajemen polusi dan pembuangan, mengurangi penggunaan bahan bakar fosil, serta mengurangi emisi gas rumah kaca. Uni Eropa telah mempublikasikan sebuah laporan yang menyoroti potensi energi bio yang berasal dari limbah untuk memberikan kontribusi bagi pengurangan pemanasan global. Laporan itu menyimpulkan bahwa di tahun 2020 nanti 19 juta ton minyak tersedia dari biomassa, 46% dari limbah bio: limbah padat perkotaan, residu pertanian, limbah peternakan, dan aliran limbah terbiodegradasi yang lain. [3][4]

Tempat penampungan akhir sampah menghasilkan sejumlah gas karena limbah yang dipendam di dalamnya mengalami pencernaan anaerobik. Secara kolektif gas-gas ini dikenal sebagai landfill gas (LFG) atau gas tempat pembuangan akhir sampah. Landfill gas bisa dibakar baik secara langsung untuk menghasilkan panas atau menghasilkan listrik bagi konsumsi publik. Landfill gas mengandung sekitar 50% metana, gas yang juga terdapat di dalam gas alam.

Biomassa bisa berasal dari limbah materi tanaman. Gas dari tempat penampungan kotoran manusia dan hewan yang memasuki atmosfir merupakan hal yang tidak diinginkan karena metana adalah salah satu gas rumah kaca yang potensil pemanasan globalnya melebihi karbondioksida. [5][6] Frank Keppler dan Thomas Rockmann menemukan bahwa tanaman hidup juga memproduksi metana CH4.

== Bahan bakar berbentuk cair bagi transportasi ==

Sebagian besar bahan bakar transportasi berbentuk cairan, sebab berbagai kendaraan biasanya membutuhkan kepadatan energi yang tinggi. Kendaraan biasanya membutuhkan kepadatan kekuatan yang tinggi yang bisa disediakan oleh mesin pembakaran dalam. Mesin ini membutuhkan bahan bakar pembakaran yang bersih untuk menjaga kebersihan mesin dan meminimalisir polusi udara. Bahan bakar yang lebih mudah dibakar dengan bersih biasanya berbentuk cairan dan gas. Dengan begitu cairan (serta gas-gas yang bisa disimpan dalam bentuk cair) memenuhi persyaratan pembakaran yang portabel dan bersih. Selain itu cairan dan gas bisa dipompa, yang berarti penanganannya mudah dimekanisasi, dan dengan begitu tidak membutuhkan banyak tenaga.

Biofuel generasi pertama

Biofuel generasi pertama menunjuk kepada biofuel yang terbuat dari gula, starch, minyak sayur, atau lemak hewan menggunakan teknologi konvensional.[7]

Biofuel generasi pertama yang umum didaftar sebagai berikut.

Minyak sayur

Minyak sayur dapat digunakan sebagai makanan atau bahan bakar; kualitas dari minyak dapat lebih rendah untuk kegunaan bahan bakar. Minyak sayur dapat digunakan dalam mesin diesel yang tua (yang dilengkapi dengan sistem injeksi tidak langsung, tapi hanya dalam iklim yang hangat. Dalam banyak kasus, minyak sayur dapat digunakan untuk memproduksi biodiesel, yang dapat digunakan kebanyakan mesin diesel bila dicampur dengan bahan bakar diesel konvensional. MAN B&W Diesel, Wartsila dan Deutz AG menawarkan mesin yang dapat digunakan langsung dengan minyak sayur. Minyak sayur bekas yang diproses menjadi biodiesel mengalami peningkatan, dan dalam skala kecil, dibersihkan dari air dan partikel dan digunakan sebagai bahan bakar.

Biodiesel

Biodiesel merupakan biofuel yang paling umum di Eropa. Biodiesel diproduksi dari minyak atau lemak menggunakan transesterifikasi dan merupakan cairan yang komposisinya mirip dengan diesel mineral. Nama kimianya adalah methyl asam lemak (atau ethyl) ester (FAME). Minyak dicampur dengan sodium hidroksida dan methanol (atau ethanol_ dan reaksi kimia menghasilkan biodiesel (FAME) dan glycerol. 1 bagian glycerol dihasilkan untuk setiap 10 bagian biodiesel.

Biodiesel dapat digunakan di setiap mesin diesel kalau dicampur dengan diesel mineral. Di beberapa negara produsen memberikan garansi untuk penggunaan 100% biodiesel. Kebanyakan produsen kendaraan membatasi rekomendasi mereka untuk penggunaan biodiesel sebanyak 15% yang dicampur dengan diesel mineral. Di kebanyakan negara Eropa, campuran biodiesel 5% banyak digunakan luas dan tersedia di banyak stasiun bahan bakar.[8][9]

Di AS, lebih dari 80% truk komersial dan bis kota beroperasi menggunakan diesel. Oleh karena itu penggunaan biodiesel AS bertumbuh cepat dari sekitar 25 juta galon per tahun pada 2004 menjadi 78 juta galon pada awal 2005. Pada akhir 2006, produksi biodiesel diperkirakan meningkat empat kali lipat menjadi 1 milyar galon. [3]

Bioalkohol

Alkohol yang diproduksi secarai biologi, yang umum adalah ethanol, dan yang kurang umum adalah propanol dan butanol, diproduksi dengan aksi mikroorganisme dan enzym melalui fermentasi gula atau starch, atau selulosa. Biobutanol seringkali dianggap sebagai pengganti langsung bensin, karena dapat digunakan langsung dalam mesin bensin.

Butanol terbentuk dari ABE fermentation (acetone, butanol, ethanol) dan eksperimen modifikasi dari proses tersebut memperlihatkan potensi yang menghasilkan energi yang tinggi dengan butanol sebagai produk cair. Butanol dapat menghasilkan energi yang lebih banyak dan dapat terbakar "langsung" dalam mesin bensin yang sudah ada (tanpa modifikasi mesin).[10] Dan lebih tidak menyebabkan korosi dan kurang dapat tercampur dengan air dibanding ethanol, dan dapat didistribusi melalui infrastruktur yang telah ada. Dupont dan BP bekerja sama untuk menghasilkan butanol.

Bahan bakar ethanol merupakan biofuel paling umum di dunia, terutama bahan bakar ethanol di Brazil. Bahan bakar alkohol diproduksi dengan cara fermentasi gula yang dihasilkan dari gandum, jagung, sugar beet, sugar cane, molasses dan gula atau starch yang dapat dibuat minuman beralkohol (seperti kentang dan sisa buah, dll). Produksi ethanol menggunakan digesti enzyme untuk menghasilkan gula dari starch, fermentasi gula, distilasi dan pengeringan. Proses ini membutuhkan banyak energi untuk pemanasan (seringkali menggunakan gas alam).

Produksi ethanol selulosik menggunakan tanaman non-pangan atau produk sisa yang tak bisa dikonsumsi, yang tidak mengakibatkan dampak pada siklus makanan.

Memproduksi ethanol dari selulosa merupakan langkah-tambahan yang sulit dan mahal dan masih menunggu penyelesaian masalah teknis. Ternak yang memakan rumput dan menggunakan proses digestif yang lamban untuk memecahnya menjadi glukosa (gula). Dalam laboratorium ethanol selulosik, banyak proses eksperimental sedang dilakukan untuk melakukan hal yang sama, dan menggunakan cara tersebut untuk membuat bahan bakar ethanol.

Beberapa ilmuwan telah mengemukakan rasa prihatin terhadap percobaan teknik genetika DNA rekombinan yang mencoba untuk mengembangkan enzym yang dapat memecah kayu lebih cepat dari alam, makhluk mikroskopik tersebut dapat tidak sengaja terlepas ke alam, tumbuh secara eksponensial, disebarkan oleh angin, dan pada akhirnya menyebabkan kerusakan struktur seluruh tanaman, yang dapat mengakhiri produksi oksigen yang dilepaskan oleh proses fotosintesis tumbuhan.

Ethanol dapat digunakan dalam mesin bensin sebagai pengganti bensin; ethanol dapat dicampur dengan bensin dengan persentase tertentu. Kebanyakan mesin bensin dapat beroperasi menggunakan campuran ethanol sampai 15% dengan bensin. Bensin dengan ethanol memiliki angka oktan yang lebih tinggi, yang berarti mesin dapat terbakar lebih panas dan lebih efisien.

Bahan bakar ethanol memiliki BTU yang lebih rendah, yang berarti memerlukan lebih banyak bahan bakar untuk melakukan perjalan dengan jarak yang sama. Dalam mesin kompresi-tinggi, dibutuhkan bahan bakar dengan sedikit ethanol dan pembakaran lambat untuk mencegah pra-ignisi yang merusak (knocking).

Ethanol sangat korosif terhadap sistem pembakaran, selang dan gasket karet, aluminum, dan ruang pembakaran. Oleh karena itu penggunaan bahan bakar yang mengandung alkohol ilegal bila digunakan pesawat. Untuk campuran ethanol konsentrasi tinggi atau 100%, mesin perlu dimodifikasi.

Ethanol yang meyebabkan korosif tidak dapat disalurkan melalui pipa bensin, oleh karena itu diperlukan truk tangki stainless-steel yang lebih mahal, meningkatkan konsumsi biaya dan energi yang dibutuhkan untuk mengantar ethanol ke konsumen.

Banyak produsen kendaraan sekarang ini memproduksi kendaraan bahan bakar fleksibel, yang dapat beroperasi dengan kombinasi bioethanol dan bensin, sampai dengan 100% bioethanol.

Alkohol dapat bercampur dengan bensin dan air, jadi bahan bakar ethanol dapat tercampur setelah proses pembersihan dengan menyerap kelembaban dari atmosfer. Air dalam bahan bakar ethanol dapat mengurangi efisiensi, menyebabkan mesin susah dihidupkan, menyebabkan gangguan operasi, dan mengoksidasi aluminum (karat pada karburator dan komponen dari besi).

BioGas

Biogas diproduksi dengna proses digesti anaerobik dari bahan organik oleh anaerobe. Biogas dapat diproduksi melalui bahan sisa yang dapat terurai atau menggunakan tanaman energi yang dimasukan ke dalam pencerna anaerobik untuk menambah gas yang dihasilkan. Hasil sampingan, digestate, dapat digunakan sebagai bahan bakar bio atau pupuk.

Biogas mengandung methane dan dapat diperoleh dari digester anaerobik industri dan sistem pengelolaan biologi mekanik. Gas sampah adalah sejenis biogas yang tidak bersih yang diproduksi dalam tumpukan sampah melalui digesti anaerobik yang terjadi secara alami. Bila gas ini lepas ke atmosfer, gas ini merupakan gas rumah kaca.

Biofuel padat

Contohnya termasuk kayu, arang, dan manur kering.

Syngas dihasilkan oleh kombinasi proses pyrolysis, kombusi, dan gasifikasi. Bahan bakar bio dikonversi menjadi karbon monoksida dan energi melalui pyrolysis. Masukan oksigen terbatas diberikan untuk mendukung kombusi. Gasifikasi mengubah materi organik menjadi hidrogen dan karbon monoksida.

Campuran gas yang dihasilkan, syngas, adalah bahan bakar.

Biofuel generasi kedua

Para pendukung biofuel mengklaim telah memiliki solusi yang lebih baik untuk meningkatkan dukungan politik serta industri untuk, dan percepatan, implementasi biofuel generasi kedua dari sejumlah tanaman yang tidak digunakan untuk konsumsi manusia dan hewan, di antaranya cellulosic biofuel.[12] Proses produksi biofuel generasi kedua bisa menggunakan berbagai tanaman yang tidak digunakan untuk konsumsi manusia dan hewan yang diantaranya adalah limbah biomassa, batang/tangkai gandum, jagung, kayu, dan berbagai tanaman biomassa atau energi yang spesial (contohnya Miscanthus). Biofuel generasi kedua (2G) menggunakan teknologi biomassa ke cairan, diantaranya cellulosic biofuel dari tanaman yang tidak digunakan untuk konsumsi manusia dan hewan.[13] Sebagian besar biofuel generasi kedua sedang dikembangkan seperti biohidrogen, biometanol, DMF, Bio-DME, Fischer-Tropsch diesel, biohydrogen diesel, alkohol campuran dan diesel kayu. Produksi cellulosic ethanol mempergunakan berbagai tanaman yang tidak digunakan untuk konsumsi manusia dan hewan atau produk buangan yang tidak bisa dimakan. Memproduksi etanol dari selulosa merupakan sebuah permasalahan teknis yang sulit untuk dipecahkan. Berbagai hewan ternak pemamah biak (seperti sapi) memakan rumput lalu menggunakan proses pencernaan yang berkaitan dengan enzim yang lamban untuk menguraikannya menjadi glukosa (gula). Di dalam labolatorium cellulosic ethanol, berbagai proses eksperimen sedang dikembangkan untuk melakukan hal yang sama, lalu gula yang dihasilkan bisa difermentasi untuk menjadi bahan bakar etanol. Para ilmuwan juga sedang bereksperimen dengan sejumlah organisme hasil rekayasa genetik penyatuan kembali DNA yang mampu meningkatkan potensi biofuel.







Sumber : http://id.wikipedia.org/wiki/Bahan_bakar_bio

Biomassa

Tumbuhan biasanya Menggunakan fotosintesis untuk Menyimpan tenaga surya, udara, dan CO 2. Bahan bakar bio adalah bahan bakar yang diperoleh dari biomassa - Organisme atau produk dari metabolisme mereka, seperti tai dari sapi. Dia Merupakan energi terbaharui.

Biasanya bahan bakar bio dibakar untuk energi kimia Melepas Yang Tersimpan di dalamnya. Riset untuk mengubah bahan bakar bio menjadi listrik Menggunakan sel bahan bakar adalah bidang penelitian yang sangat aktif.

Biomassa dapat Digunakan langsung sebagai bahan bakar atau untuk memproduksi bahan bakar bio cair. Biomass yang diproduksi dengan teknik pertanian, seperti biodiesel, etanol, dan bagasse (seringkali sebuah produk sampingan dari pengkultivasian Tebu) dapat dibakar dalam mesin Pembakaran dalam atau pendidih.

Sebuah hambatan adalah seluruh biomass harus melalui proses Beberapa berikut: harus dikembangkan, dikumpulkan, dikeringkan, difermentasi dan dibakar. Seluruh langkah ini membutuhkan banyak sumber daya dan infrastruktur.

Bahan bakar bio cair

Bahan bakar bio cair biasanya adalah bioalcohol seperti metanol, etanol dan biodiesel. Biodiesel dapat digunakan pada kendaraan diesel modern dengan sedikit atau tanpa modifikasi dan dapat diperoleh dari limbah dan kasar sayur dan minyak hewani serta lemak. Di beberapa daerah jagung, gula bit, tebu dan rumput yang tumbuh secara khusus untuk menghasilkan etanol (juga dikenal sebagai alkohol) suatu cairan yang dapat digunakan dalam mesin pembakaran internal dan bahan bakar minyak.

Rencana Uni Eropa untuk menambah 5% bioetanol untuk bensin di Eropa pada tahun 2010. For the UK saja produksi akan memerlukan 12.000 kilometer persegi di negara itu 65.000 kilometer persegi tanah yang subur.

Lain-lain, lebih efisien sumber biofuel, seperti kelapa dan minyak kedelai, mungkin akan memiliki dampak lingkungan negatif yang signifikan akibat kerusakan habitat di daerah-daerah di mana mereka tumbuh.

Solid biomas

Penggunaan langsung biasanya dalam bentuk padatan yang mudah terbakar, baik kayu bakar atau tanaman lapangan yang mudah terbakar. Bidang tanaman dapat tumbuh secara khusus untuk pembakaran atau dapat digunakan untuk keperluan lain, dan limbah pabrik diproses kemudian digunakan untuk pembakaran. Kebanyakan jenis biomatter, termasuk pupuk kandang kering, sebenarnya dapat dibakar untuk memanaskan air dan menggerakkan turbin. Gula tebu residu, gandum sekam, jagung tongkol dan tanaman lain pun bisa, dan, dibakar cukup berhasil. Proses tidak melepaskan CO bersih 2

Solid biomas juga merupakan gasifikasi, dan digunakan sebagai dijelaskan dalam bagian berikutnya.

Biogas

Banyak bahan-bahan organik dapat melepaskan gas, karena metabolisation bahan organik oleh bakteri (fermentasi). Landfills sebenarnya perlu melepaskan gas ini untuk mencegah ledakan berbahaya. Rilis kotoran hewan metana di bawah pengaruh anaerob bakteri.

Juga, di bawah tekanan tinggi, suhu tinggi, anaerobik kondisi banyak bahan organik seperti kayu dapat menjadi gasified untuk menghasilkan gas. Hal ini sering ditemukan untuk menjadi lebih efisien daripada pembakaran langsung. Gas kemudian dapat digunakan untuk menghasilkan listrik dan / atau panas.

Biogas dapat dengan mudah dihasilkan dari aliran limbah saat ini, seperti: produksi kertas, produksi gula, limbah, kotoran hewan dan sebagainya. Berbagai aliran limbah harus slurried bersama-sama dan dibiarkan secara alami berfermentasi, menghasilkan gas metana. Kita hanya perlu mengubah kotoran saat ini biogas tanaman untuk tanaman, membangun lebih banyak terpusat lokal biogas kecil tanaman dan rencana untuk masa depan. Produksi biogas memiliki kapasitas untuk menyediakan kami dengan sekitar setengah dari kebutuhan energi kita, baik dibakar untuk produksi listrik atau pipa ke pipa gas saat ini untuk digunakan. Hanya saja yang harus dilakukan dan membuat prioritas. Selain itu, bila tanaman telah diekstrak semua metana dapat, kita ditinggalkan dengan yang lebih baik pupuk untuk lahan pertanian kita daripada kita mulai dengan



































Sumber : http://id.wikipedia.org/wiki/Energi_terbarui



RINGKASAN



Penggunaan energi besar-besaran telah membuat manusia mengalami krisis energi. Ini disebabkan ketergantungan terhadap bahan bakar fosil seperti minyak bumi dan gas alam yang sangat tinggi. Sebagaimana kita ketahui, bahan bakar fosil merupakan sumber daya alam yang tidak terbarukan. Untuk mengatasi krisis energi masa depan, beberapa alternatif sumber energi mulai dikembangkan, salah satunya adalah energi biomassa.

Pengembangan biomasa sebagai sumber energi untuk substitusi bahan bakar bisa menjadi solusi untuk mengurangi beredarnya gas rumah kaca di atmosfer. Dengan penggunaan biomassa sebagai sumber energi maka konsentrasi CO2 dalam atmosfer akan seimbang. Pada waktu yang sama manusia makin menyebabkan peningkatan rumah kaca dengan penebangan hutan secara luas (deforestrisasi) sehingga mengurangi kemampuannya untuk menyerap gas CO2. disamping itu hasil hutan yang diperoleh dibakar dan menghasilkan CO2 dan beberapa partikulat matter.

Energi biomassa menjadi penting bila dibandingkan dengan energi terbaharukan karena proses konversi menjadi energi listrik memiliki investasi yang lebih murah bila di bandingkan dengan jenis sumber energi terbaharukan lainnya. Hal inilah yang menjadi kelebihan biomassa dibandingkan dengan energi lainnya. Proses energi biomassa sendiri memanfaatkan energi matahari untuk merubah energi panas menjadi karbohidrat melalui proses fotosintesis yang selanjutnya diubah kembali menjadi energi panas.

Biomassa dapat digunakan langsung sebagai bahan bakar atau untuk memproduksi bahan bakar bio cair. Biomass yang diproduksi dengan teknik pertanian, seperti biodiesel, etanol, dan bagasse (seringkali sebuah produk sampingan dari pengkultivasian Tebu) dapat dibakar dalam mesin pembakaran dalam atau pendidih.

Pengembangan biomassa dengan memanfaatkan berbagai limbah, seperti limbah pertanian, kehutanan dan industri perkebunan akan lebih menguntungkan. “Selain itu, energi biomassa juga merupakan energi yang ramah lingkungan karena tidak menimbulkan emisi gas buang,”

Beberapa dampak negatif dari biomass adalah kerusakan kawasan hutan karena penebangan yang tidak terkontrol. Hilangnya vegetasi hutan menyebabkan pengikisan lapisan tanah yang subur. Akibatnya, lahan pertanian pun makin berkurang dan naiknya harga bahan baku pangan.

51 Keutamaan Dzikir

(1) Dengan dzikir akan mengusir setan.   (2) Dzikir mudah mendatangkan ridho Ar Rahman. (3) Dzikir dapat menghilangkan geli...